middot warning cancel success information linkedin google twitter facebook whatsapp user-stroke rss yacht-silhouette library user ship tel email print share lock spyglass arrow--down arrow--up arrow--left arrow--right coins city yacht warranty pin

University of TorontoX: Quantum Machine Learning

Online Course

  • Price: GBP (£)39 (Inc VAT if applicable)

Course Details

  • School edX
  • Location Online Course
  • All Dates Please contact us about this distance learning course
  • Duration 9 week(s)
  • Accommodation Included No
  • Reference University of Toront

The pace of development in quantum computing mirrors the rapid advances made in machine learning and artificial intelligence. It is natural to ask whether quantum technologies could boost learning algorithms: this field of inquiry is called quantum-enhanced machine learning. The goal of this course is to show what benefits current and future quantum technologies can provide to machine learning, focusing on algorithms that are challenging with classical digital computers. We put a strong emphasis on implementing the protocols, using open source frameworks in Python. Prominent researchers in the field will give guest lectures to provide extra depth to each major topic. These guest lecturers include Alán Aspuru-Guzik, Seth Lloyd, Roger Melko, and Maria Schuld.

In particular, we will address the following objectives:

1) Understand the basics of quantum states as a generalization of classical probability distributions, their evolution in closed and open systems, and measurements as a form of sampling. Describe elementary classical and quantum many-body systems.

2) Contrast quantum computing paradigms and implementations. Recognize the limitations of current and near-future quantum technologies and the kind of the tasks where they outperform or are expected to outperform classical computers. Explain variational circuits.

3) Describe and implement classical-quantum hybrid learning algorithms. Encode classical information in quantum systems. Perform discrete optimization in ensembles and unsupervised machine learning with different quantum computing paradigms. Sample quantum states for probabilistic models. Experiment with unusual kernel functions on quantum computers

4) Demonstrate coherent quantum machine learning protocols and estimate their resources requirements. Summarize quantum Fourier transformation, quantum phase estimation and quantum matrix, and implement these algorithms. General linear algebra subroutines by quantum algorithms. Gaussian processes on a quantum computer.

Structure

Institution: University_of_TorontoX

Subject: Computer Science

Level: Advanced

Prerequisites:

Linear algebra, complex numbers, calculus, intermediate Python. One of the following is highly recommended: statistical mechanics, quantum physics, machine learning.

Language: English

Video Transcript: English

Associated skills: Algorithms, Blended Learning, Machine Learning Algorithms, Probability Distribution, Linear Algebra, Machine Learning, Artificial Intelligence, Experimentation, Gaussian Process, Biological Systems, Discrete Optimization, Quantum Computing, Python (Programming Language)

Useful Information

What you'll learn

By the end of this course, students will be able to:

· Distinguish between quantum computing paradigms relevant for machine learning

· Assess expectations for quantum devices on various time scales

· Identify opportunities in machine learning for using quantum resources

· Implement learning algorithms on quantum computers in Python

edX

edX Ltd, Cambridge, 141 Portland St, United States

See location on Google Maps

View School

ContactWebsite