An in-depth introduction to the field of machine learning, from linear models to deep learning and reinforcement learning, through hands-on Python projects. -- Part of the MITx MicroMasters program in Statistics and Data Science.
Syllabus
Lectures :
Introduction
Linear classifiers, separability, perceptron algorithm
Maximum margin hyperplane, loss, regularization
Stochastic gradient descent, over-fitting, generalization
Linear regression
Recommender problems, collaborative filtering
Non-linear classification, kernels
Learning features, Neural networks
Deep learning, back propagation
Recurrent neural networks
Generalization, complexity, VC-dimension
Unsupervised learning: clustering
Generative models, mixtures
Mixtures and the EM algorithm
Learning to control: Reinforcement learning
Reinforcement learning continued
Applications: Natural Language Processing
Projects :
Automatic Review Analyzer
Digit Recognition with Neural Networks
Reinforcement Learning